StreamStats for Ohio's Fire Service

Getting Flow Estimates for Current or Proposed Drafting Sites

Prepared by: Jeremy A. Keller, Water Supply Technical Advisory Committee, Ohio Fire Chiefs' Association

Establishing a pre-planned draft site on a creek or river can be tricky. Flows vary throughout the year, and there is no way to determine a hydrologically valid estimate for a site without long-term data from a U.S. Geological Survey (USGS) stream gage. Unfortunately, stream gages are few and far between, and many smaller tributary streams are not gaged at all.

Fortunately for Ohio, the USGS and Ohio state agencies have developed an online tool called StreamStats that provides hydrologically valid estimates for stream flows, even on ungaged streams, using models based on decades of hydrology data collected for the state's river systems.

Using the StreamStats online tools and the Ohio StreamStats Worksheet, you can create a performance profile for a current or proposed draft site using the most hydrologically sound data and processes available.

1. Navigate to the USGS StreamStats homepage:

Web link: http://water.usgs.gov/osw/streamstats/

You should land on a page that looks like the image to the right. USGS is always making upgrades to StreamStats, so it may not look exactly like the image.

2. Go to the state applications

In the menu on the left-hand side of the StreamStats homepage, click on the link for "Version 3 State Applications"

Direct link here: http://water.usgs.gov/osw/streamstats/ssonline.html

<u>Home</u> News	
Version 3 State Applications	۶.
Beta Version 4 Application	
Version 3 User Instructions	
<u>Beta Version 4 User</u> <u>Instructions</u>	
StreamStats Description	
Ungaged Site Reports	
Data-Collection Station Reports	
StreamStats Limitations	
USGS Station Statistics	
<u>Troubleshooting</u>	
Definitions	

3. Go to the Ohio-specific application page

On the state-specific page, select "Ohio" from the pull-down menu at the top or click on it in the map (your choice)

Direct Link:

http://water.usgs.gov/osw/streamstats/ohio.html

5. Go to the Interactive Map application

Click on the "Interactive Map" link on the Ohiospecific page, and be patient as the map application loads.

Direct Link:

http://streamstatsags.cr.usgs.gov/v3_beta/viewer.ht m?stabbr=OH

6. Locate the Zoom Tool

After the interactive map loads, you should be looking at a web map that is more or less centered on Ohio, like the image below.

You will need to zoom in to your draft site to use the flow estimation tools.

Make sure that the zoom in tool is selected (magnifying glass with plus sign, at top left of map)

7. Zoom in to your draft site

You must be zoomed in to at least 1:24,000 scale before the flow estimation tools will work.

Keep zooming in until you locate your draft site. You will know you are zoomed in far enough when you see the streams appear as pixelated blue lines.

I used the US-68 bridge over the Mad River in this example (south of West Liberty in Logan County).

8. Delineate the watershed

Select the watershed delineation tool from the toolbar at the top (button with a black dot and plus sign).

Using the watershed delineation tool, click on the approximate location of the draft site in the map, making sure you select a location along the blue line representing the stream.

Typically, you would be selecting the intersection of the stream and a road feature, i.e. a bridge.

9. Examine the delineated watershed

The watershed delineation process will take a few minutes to run.

This will identify the entire area upstream of the point you selected, which is the basin that feeds water to your draft site.

The result should look something like the image to the right. The pink area is the watershed feeding your draft site.

If you don't like the looks of it for some reason, you can

just zoom back in and use the delineation too again until you are satisfied with the results.

10. Compute the Flow Statistics

On the "Delineation Results" pop-up box that appears, locate the "Compute Flow Statistics" button, which looks like a letter "Q" wearing a hat.

Press this button, and StreamStats will start generating your flow estimates.

11. Compute the Flow Statistics (continued)

In the pop-up window that appears, click the button to "Compute Flows."

This will create your estimates.

Just leave it set to compute all flows by leaving the "ALL" box checked.

Select Flow Types - Google Chrome			X
③ streamstatsags.cr.usgs.gov/v3	beta/computeFlows.htm?stabbrGdelin=OH		
≪USGS Q	StreamStats Version 3.0		1
Compute Flow	Close		
ALL	FlowTypes		
•	PeakFlows	1	
8	LowFlow	1	
2	ProbZeroFlows	1	
2	MeanPercentFlow	1	

12. Examine the Flow Statistics Results

The process will run for a few minutes, then you will get results that look like the image to the right.

You will need to extract some of these results to populate the flow estimate worksheet.

You can print the outputs or save to a .pdf document at this point.

ItreamStats Flow Statistics Report - Google Chrome						
treamstatsags.cr.usgs.gov/v3_beta/FTreport.htm?rcode=OH8cworkspaceID=O	H201612191208336730008includeflowtypes=PeakF	lows.LowFlow.ProbZeroFlows.MeanF	ercentFlow			
USGS Q	TreamStats Version 3. Print Flow Statistics Ungaged Site Report		and have			
xe: Mon Dec 19, 2016 2:16:04 PM GMT-5 udy Area: Ohio 0. 1993 Latismonie: -83.7552 (-83.45 19) alinege Area: 55.9 ml2						
	Peak Flows Basin Characteristics					
00% Reak Flow Full Model (55.9 mi2)						
		Regression Equation Valid Range				
ar annever	value	Min	Max			
rainage Area (square miles)	55.9	0.01	7422			
vio Region C Indicator 1 if in C else 0 (dimensionless)		0	1			
vio Region A Indicator 1 if in A else 0 (dimensionless)	1	0	1			
yeam Slope 10 and 85 Longest Flow Path (feet per mi)	14.5	1.53	674			
rcent Storage from NLCD1992 (percent)	0.46	0	25.8			
	Low Flows Basin Characteristics					
	contractor duran characteristics					
00% Low Flow Region A 2012 5138 (55.9 mi2)						
arameter	Value	Regression Equation Valid Range				
alares to former what		Min	Max			
ainage Area (square miles)	55.9	1	1250			
reaminow variability more from one (officerstoncess)	0.4	0.24	1.12			
Pro	bability of Zero Flow Basin Characteristics					
205 P. zero Flow 2012 5138 (55.9 mi2)						
		Regression Equation V	alid Range			
srameter.	Value	Min	Max			
alnage Area. (square miles)	55.9	1	1250			
rainage Area (square milies) reamflow Variability index from Grid (dimensionless)	55.9 0.4	1 0.24	1250			
ralnage Area (square milies) reamflow Variability index from Grid (dimensionless)	55.9 0.4	1 0.24	1250			
rainage Area (square miles) reaemflow Variability index from Grid (dimensionless) coordinate flatitude) of the centroid in decimal desrees-40.3074	55.9 0.4	0.24	1250			
rainage Area (square miller) reamflow Yarlability miler from Grid (dimensionless) coordinate (latitude) of the centrold_ in decimal degrees-40.3074 000 Low Flow LatE 41.2 w102 4064 053.5 mil2)	een and Percentile Basin Characteristics	0.24	1250			
alinge Area (opart mitho) exemble: You shalling make from GHz (dimensionless) Coordinate (statitude) of the control (, in decimal degrees-40.3074 005 Love Flow Latt. 41.2 writi2 4048 (55.9 mit2) control	55.9 0.4	1 0.24	1250 1.12			
allings etcs (guare offer) another Vaciality inder from Grid (dimensionless) Coordinate (adhudo) of the centroid, in decimal degrees-40.3074 Official (Law Flow Latt 41.2 wr102 4068 (55.9 ml2) another	55.7 0.4 een and Percentile Basin Characteristics	1 0.24 Regression Equation	1250 1.12 Valid Range Max			
alitage Aras (spann minite) vandfor in Spachfiller (note Grid (dismanistetes)) (autoritate (latitude) of the centrold, in declinal degrees-49.3074 98 (sour Flow Latt 64.2, wr02 4068 (55.9 m2)) randeter Jange Aras (spann minite)	value Value S5.5 Value S5.5 Value S5.5	t 0.24 Regression Equation Min 0.12	1250 1,12 Velid Range Max 7422			
alleg & no (spare nileg) another transfer fram Grid (dimensionless) contribute (latitude) of the control (dimensionless) (55.5 64 64 65.5 64 64 65.5 7 7 7 16	1 0.24 Regression Equation Nin 0.12 0	1250 1,12 Valid Range Max 7422 99,1			
alling & An (gapen mind) coordinate functionality index from Gel (dimensionless) coordinate (laritude) of the control (, is declinat degrees-68.3074 degrees-68.3074 degrees-68.3074 control incut (42.4.2.4.4024 degrees-69.3074 control incut (42.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		1 0.24	1250 1.12 Velid Range Max 7422 99.1 13			
variage and puper while concluster training and the delt (downloaded) concluster (lashada) of the control (, is deviaud degrees-40.3074 300 Law Flaw Laff, 41.3 w102 4064 (5.5 % 42) anatore indeg and puper which indeg and puper which indeg and puper which indeg and puper which (body) and the puper body (body) indeg and puper which (body)		1 0.24 8egression Equation Min 0.12 0 0 3 4	1250 1.12 Valid Range Max 7422 99.1 19 4).2			

13. Extract the Relevant Statistics

Near the bottom of the output window, locate the section titled "Mean and Percentile Statistics."

The specific items you need are "Value" (monthly average flow volume) and "Prediction Error" (uncertainty factor in the model results).

The statistics of interest are for Q1 through Q12, which are estimated

			Mean a	and Percentile Statistics
Statistic	Value	Unit	Prediction Error (percent)	Equivalent yea
Q1	73.3	ft3/s	17	
Q2	87.6	ft3/s	12	
Q3	106	ft3/s	14	
Q4	91.3	ft3/s	11	
Q5	66.3	ft3/s	20	
Q6	49.4	ft3/s	27	
Q7	33.4	ft3/s	28	
Q8	20.6	ft3/s	37	
Q9	14.8	ft3/s	44	
QA	53.1	ft3/s	11	
Q10	16.9	ft3/s	51	
Q11	28.2	ft3/s	38	
Q12	56	ft3/s	22	
QAH	16.5	ft3/s	66	
FPS25	14.6	ft3/s	29	
FPS50	26.2	ft3/s	40	
FPS75	52.6	ft3/s	48	

average flows for each calendar month. You will enter these numbers into the flow estimation worksheet (Excel spreadsheet).

Warning: Be careful not to copy the "QA" statistic, which is the annual flow estimate. For some reason, this always comes out in between Q9 and Q10.

Note that StreamStats provides all estimates in cubic feet per second (ft3/s or CFS), which must be converted to gallons per minute (GPM) for fire service use. The worksheet will automatically make this conversion, using 1 CFS = 448.831169 GPM.

14. Open the StreamStats Flow Worksheet

Open the worksheet, which is an Excel spreadsheet file called "Ohio StreamStats Worksheet v3 – 20161218.xlsx"

The cells that are shaded pink require an input from you. They will change to white once you enter an appropriate value.

Save the worksheet for your drafting site under a new name so that you can keep a "clean" copy of the original file.

8 Call			101 2010 11	EHEN VIEW											-	
la - 🚞	iani - 10	• A* A*	· - * -	🐨 Wrap Text	Numbe	r •		1	ŝ	ā.	×			. ź	7 6	à
I 💌 💌	χū. Ξ.	<u>A</u> · <u>A</u> · ■	1 <mark>1 1</mark> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Merge & C	Center * 5 *	5 · 5 / 2	Formatting	* as Table * S	Cell Mai *	insert	Delete	Fans	1 4	- FR	t & Find er * Sele	18
aid is	Fant		Aligne	nest		Number 5		Shiel			Cells			E	1540	
013	* (*)£								_							
hio Strea	amStats Flow	Worksheet	t	,	G Ohio Water Suppl	H Fire Chiefs' A: Y Testmical Advisor	sociation y Committee	\$	ĸ	L	м	N	0		a	
1. Fill Site Info	ormation															
sa. Site Descrip	tion/Designator				Sc. Fill Site Botto	m Substrate	-> Equipi	toble Praction								
								#N/A								
2h. Site Location	n				3d Minimum Acc	eptable flow										
								GPM								
									i							
7. How Eddin	ates															
		StreamStats Data	•		Conversion to GPI	м										
Month	StreamStats Statistic	Plow (CPS)	Prediction Error (NJ	Min Flow (GPM)	Average flow (SPM)	Max Flow (GPM)	Exploitable	Flow (GPM)								
JANN .	Q1				0	0	-	(/A	1							
FEB	02			0	0	0	8N	U/A								
MAR	0.5				0	0	-	i/A								
APR	Q4			•	0	0	85	(A)								
MAX	05				0	0	45	VA.								
JUN	Q6				0	0	#N	(/A								
JUL .	07				0	0	45	VA.								
AUX	QR			0	0	0	-	(/A								
SEP	Q9			•	0	0	4N	VA.								
OCT	Q30			0	0	0	15	VA.	1							
NOV	011			•	0	0	15	VA	1							
	012					-			1							

15. Complete Block 1. Fill Site Information

Complete the items in Block 1 as follows.

1. Fill Site Information		
1a. Site Description / Designator	1c. Fill Site Bottom Substrate → Explo	itable Fraction
68-A	3 - Silt / Sand	0.5
1b. Site Location	1d. Minimum Acceptable Flow	
Mad River bridge @ US-68	1000	GPM

- <u>1a. Site Description / Designator</u>: Enter your designation for the fill site, up to 50 characters
- <u>1b. Site Location</u>: Provide location information for the site (road address, GPS coordinates, etc.), up to 50 characters
- <u>1c. Fill Site Bottom Substrate</u>: Select the appropriate bottom material form the pull-down list. This will reduce the flow estimates to account for the pore spaces in the stream bed materials. StreamStats estimates include potential flow that is occurring within this material, which is not accessible for drafting purposes.
- <u>1d. Minimum Acceptable Flow</u>: Enter the minimum acceptable flow in GPM for this site, as defined by your department's needs. Use 250 GPM if you need a good default value, since this is the minimum required under NFPA 1142.

-

16. Complete Block 2. Flow Estimates

Carefully enter your StreamStats estimates as follows:

Under "Flow (CFS)" enter the "Value" from StreamStats for each month (Q1 through Q12).

Under "Prediction Error (%)" enter the "Prediction Error (percent)" from StreamStats for each month (Q1 through Q12).

Remember to skip over the "QA" value and prediction errors, since this is an annual estimate.

All other items, including the chart, will automatically populate as you enter values.

2. Flow Estima	lates						
) Month	StreamStats Data						
L	StreamStats Statistic	Flow (CFS)	Prediction Error (%)				
JAN	Q1	73.30	17				
FEB	Q2	87.60	12				
MAR	Q3	106.00	14				
; APR	Q4	91.30	11				
; MAY	Q5	66.30	20				
, JUN	Q6	49.40	27				
JUL	Q7	33.40	28				
AUG	Q8	20.60	37				
) SEP	Q9	14.80	44				
ОСТ	Q10	16.90	51				
NOV	Q11	28.20	38				
3 DEC	Q12	56.00	22				

17. Examine your Results

Your results should look something like the following:

Version 3 (Dec 2016) | http://www.ohiofirechiefs.org/avs/OFCA/pt/sp/water TAC beked worksheet.password = water

18. Understanding the Results

Block 2. Flow Estimates (tabular outputs)

- The StreamStats estimates are in cubic feet per second (CFS), but the worksheet automatically converts these to gallons per minute (GPM) for you.
- The Min Flow, Average Flow, and Max Flow are the monthly average flow estimate (Average Flow), plus or minus the prediction error (Min and Max Flow). These are the raw estimates that include any inaccessible flow occurring in the streambed pore spaces.
- The Exploitable Flow values are the Min Flow values, adjusted by the Exploitable Fraction (which
 is determined by the streambed substrate). These will be color coded red or green. If they meet
 the minimum acceptable flow you designated in block 1d, they are shaded green, otherwise,
 they are red. This gives you a quick visual indication of potential problem months for the draft
 site.
- Note: The "Exploitable Volume" is an estimate that is meant to represent the volume you could realistically expect to capture while drafting. If you do not want to factor this in, just set block 1d to "1 – No Modifier" and there will be no reduction.

Block 3. Minimum Exploitable Flow Estimates (graphic output)

- This chart provides a graphic visualization of the data from the tabular section.
- The red line represents your minimum acceptable flow (from block 1d), while the dark blue line shows the minimum exploitable flow throughout the year. You can quickly see which months dip below your minimum flow levels.